BAGAIMANA KANAK-KANAK BELAJAR MATEMATIK?

 

Mengenai Kami | FAQ | Permainan Matematik | How Children Learn Maths

 

Search GOOGLE untuk teori-teori pembelajaran di sini.

TAJUK-TAJUK LAIN

SINOPSIS

Artikel ini menerangkan secara ringkas mengenai perkembangan pembelajaran matematik dalam kalangan kanak-kanak menerusi beberapa teori yang diketengahkan  oleh pakar-pakar pembelajaran antaranya ialah Teori Piaget, Bruner, Gagne dan Dienes.

Seterusnya, para pembaca akan diperkenalkan dengan satu teori yang dikenali sebagai teori Konstruktisvisme - teori mengenai pengetahuan dan pembelajaran yang menarik minat, memotivasikan serta memudahkan pemahaman pelajar.

Artikel ini amat baik untuk diteliti oleh para guru dan sesiapa juga yang berminat untuk mengetahui sedikit sebanyak mengenai psikologi kanak-kanak dalam pembelajaran matematik. Adalah diharapkan, artikel ini memberi anda idea bagaimana untuk menjadikan pembelajaran matematik itu seronok, mencabar, bermakna dan berguna!

Anda ingin dapatkan CD pembelajaran bahasa Inggeris untuk murid sekolah rendah? Klik di sini!

 

 

PENGENALAN

 

Manusia mula belajar sejak dari peringkat bayi lagi. Bayi yang baru lahir mewarisi berbagai-bagai bentuk gerakan pantulan. Contohnya apabila sesuatu objek menyentuh bibirnya, bayi terus menghisap objek tersebut tanpa perlu diajar kepadanya. Ini bererti wujud satu atur cara genetis semula jadi dalam diri bayi untuk menyerapkan kewujudan sesuatu objek. Hari demi hari, maklumat dalam ingatan bayi semakin bertambah selaras dengan peningkatan fizikalnya daripada seorang bayi ke dunia kanak-kanak seterusnya menjadi dewasa. Maklumat-maklumat yang diterima akan dipecah-pecahkan menjadi pengetahuan dan memperkembangkan keupayaan kognitifnya.

Menurut Mohd Daud Hamzah (1996), kanak-kanak mempelajari matematik melalui kegiatan seharian tertentu. Ada beberapa aktiviti yang membantu kanak-kanak memperolehi konsep-konsep awal matematik iaitu aktiviti padanan (matching), penjenisan (sorting), reguan (pairing), dan susunan aturan (ordering).

Padanan ialah kegiatan memilih sifat tertentu dan membuat perbandingan. Penjenisan pula adalah kegiatan memilih sifat umum di kalangan bentuk-bentuk. Reguan merupakan kegiatan menyatakan keselarian objek-objek secara satu lawan satu. Manakala susunan aturan adalah kegiatan meletakkan perkara sepanjang satu barisan. Walau bagaimanapun, terdapat beberapa teori daripada pakar-pakar pembelajaran bagaimana kanak-kanak mempelajari matematik dan jenis matematik yang boleh dipelajari pada peringkat yang berbeza dalam perkembangan kognitifnya. Antaranya ialah Teori Piaget, Bruner, Gagne dan Dienes.

 
Mahir Abakus Tahun 1 dan 2
Dapatkan buku kerja Abacus & Mental Arithmetic sekolah rendah.
 
Ingin belajar bahasa Inggeris?
CD interaktif belajar bahasa Inggeris untuk murid sekolah rendah.
 
Child education
Help your child learning maths!
 
 

TEORI-TEORI PEMBELAJARAN

TEORI PIAGET

Teori ini diperkenalkan oleh Jean Piaget, berasal daripada Switzerland, merupakan ahli psikologi yang banyak menyumbang kepada pemahaman bagaimana kanak-kanak belajar.

Daripada kajian dan pemerhatiannya, Piaget mendapati bahawa perkembangan kognitif kanak-kanak berbeza dan berubah melalui empat peringkat iaitu peringkat deria motor (0–2 tahun), pra-operasi (2–7 tahun), operasi konkrit (7–11 tahun) dan operasi formal (11 tahun ke dewasa).

 

Walau bagaimanapun, usia ini tidak tetap kerana ia mengikut kemampuan pelajar itu sendiri.

Menurut Jere Confrey (1999), Piagetian theory kindled my intense enjoyment of children and deep respect for their capabilities.

Sebagai seorang guru matematik sekolah rendah, kita harus memberi tumpuan terhadap perkembangan kanak-kanak pada peringkat operasi konkrit. Ketika usia sebegini kanak-kanak hanya boleh memahami konsep matematik melalui pengalaman konkrit. Oleh itu,  alat bantuan mengajar dapat membantu murid-murid memahami konsep matematik. Paiget berpendapat bahawa asas pada semua pembelajaran ialah aktiviti kanak-kanak itu sendiri. Beliau juga menegaskan kepentingan interaksi idea-idea antara kanak-kanak tersebut dengan kawan-kawan sejawatannya penting untuk perkembangan mental.

 

TEORI BRUNER

Jerome Bruner, seorang ahli psikologi yang terkenal telah banyak menyumbang dalam penulisan teori pembelajaran, proses pengajaran dan falsafah pendidikan. Bruner bersetuju dengan Piaget bahawa perkembangan kognitif kanak-kanak adalah melalui peringkat-peringkat tertentu. Walau bagaimanapun, Bruner lebih menegaskan pembelajaran secara penemuan iaitu mengolah apa yang diketahui pelajar itu kepada satu corak dalam keadaan baru (lebih kepada prinsip konstruktivisme).

Menurut kajian dan pemerhatian yang telah dibuat oleh Bruner dan pembantunya, Kenney, pada tahun 1963 mereka berjaya membina empat teorem pembelajaran matematik ( Mok Soon S ang, 1996) iaitu:

#1: Teorem Pembinaan

Cara yang paling berkesan bagi kanak-kanak mempelajari konsep, prinsip atau hukum matematik ialah membina perwakilan dan menjalankan aktiviti yang konkrit.

#2: Teorem Tatatanda

Tatatanda matematik yang diperkenalkan harus mengikut perkembangan kognitif murid tersebut.

#3: Teorem Kontras dan Variasi

Konsep yang diterangkan kepada murid harus berbeza dan pelbagai supaya murid dapat membezakan konsep-konsep matematik tersebut.

#4: Teorem Perhubungan

Setiap konsep, prinsip dan kemahiran matematik hendaklah dikaitkan dengan konsep, prinsip dan kemahiran matematik yang lain.

 

Selain daripada kajian tersebut, Bruner percaya bahawa kanak-kanak lebih dimotivasikan oleh masalah yang menarik yang tidak mampu diselesaikan oleh mereka dengan mudah seandainya tidak menguasai isi kandungan mata pelajaran dan kemahiran tertentu.

 

TEORI GAGNE

Robert M. Gagne, seorang professor dan ahli psikologi yang telah banyak membuat penyelidikan mengenai fasa dalam rangkaian pembelajaran dan jenis pembelajaran matematik. Teori pembelajaran Gagne berbeza dengan Teori Piaget dan Bruner. Menurut Gagne, terdapat empat kategori yang harus dipelajari oleh kanak-kanak dalam matematik iaitu fakta, kemahiran, konsep dan prinsip.

Gagne mempunyai hierarki pembelajaran. Antaranya ialah pembelajaran melalui isyarat, pembelajaran tindak balas rangsangan, pembelajaran melalui rantaian, pembelajaran melalui pembezaan dan sebagainya. Menurut Gagne, peringkat yang tertinggi dalam pembelajaran ialah penyelesaian masalah. Pada peringkat ini, pelajar menggunakan konsep dan prinsip-prinsip matematik yang telah dipelajari untuk menyelesaikan masalah yang belum pernah dialami.

 

 

Gagne's Theory

Robert Gagne's theory of instruction is comprised of three principles: taxonomy of learning outcomes, conditions of learning, and nine events of instruction.Gagne asserts that specific learning conditions critically influence the learning outcomes. In addition, special care must be given to the external conditions during instruction, known as the nine events of instruction.

TEORI DIENES

Professor Zolton P. Dienes, seorang ahli matematik, ahli psikologi dan pendidik, pernah memberi banyak sumbangan dalam teori pembelajaran. Beliau telah merancang satu sistem yang berkesan untuk pengajaran matematik untuk menjadikan matematik lebih mudah dan berminat untuk mempelajari. Mengikut Dienes konsep matematik boleh dipelajari melalui enam peringkat iaitu permainan bebas, permainan berstruktur, mencari ciri-ciri, perwakilan gambar, perwakilan simbol dan akhirnya formalisasi.

Teori Dienes mengariskan beberapa prinsip bagaimana kanak-kanak mempelajari matematik iaitu:

#1: Prinsip Konstruktiviti

Pelajar haruslah memahami konsep sebelum memahaminya dengan analisa yang logik. 

#2: Prinsip Perubahan Perspeptual

Kanak-kanak didedahkan pelbagai keadaan supaya dapat memaksimakan konsep Matematik.

#3: Prinsip Dinamik

Kanak-kanak mempelajari sesuatu melalui pendedahan dan eksperimen untuk membentuk satu konsep.

 

 

My Rummy - permainan matematik menggunakan kad.

 

Permainan matematik menggunakan kad adalah salah satu daripada alat bantuan mengajar yang dapat membantu murid-murid sekolah rendah memahami konsep matematik sambil bermain. Klik  untuk mendapatkan keterangan lanjut.

 

Dengan menggunakan kad yang dimainkan dalam kumpulan kecil, kanak-kanak belajar berinteraksi dan beraktiviti sesama mereka untuk mengembangkan minda mereka secara semulajadi. Hal ini selaras dengan teori yang ditekankan oleh Paiget. Penggunaan permainan matematik sebagai alat bantuan mengajar juga adalah salah satu elemen yang memperkembangkan kurikulum pembelajaran matematik di sekolah rendah.

 
 

KANAK-KANAK BELAJAR MATEMATIK

Setelah melihat teori-teori yang digariskan oleh Piaget, Bruner, Gagne dan Dienes kita dapat melihat ia ada kaitan dengan konsep konstruktivisme. Konstruktisvisme merupakan satu teori mengenai pengetahuan dan pembelajaran yang menarik minat, memotivasikan serta memudahkan pemahaman pelajar. Di samping itu, konstruktivisme menyarankan kanak-kanak membina pengetahuan secara aktif berdasarkan pengetahuan sedia ada kanak-kanak tersebut. Pembinaan pengetahuan tersebut boleh dihasilkan melalui permainan dan eksperimentasi di samping pembelajaran koperatif. Apabila kanak-kanak bekerjasama, mereka berkongsi dalam proses pembinaan idea. Secara tidak langsung, kanak-kanak tersebut dapat membina pengetahuan baru hasil daripada pembelajaran secara kendiri.

Dalam pendekatan konstruktivisme ini, persekitaran pembelajaran berpusatkan kanak-kanak menjadi asas yang penting dan guru bertindak sebagai fasilitator. Kanak-kanak juga didorong untuk mengemukakan idea dan teori bagi menyelesaikan masalah. Dalam pendidikan matematik, kanak-kanak biasanya akan diajar dengan menggunakan benda-benda konkrit supaya mereka memperolehi pengalaman yang akan digunakan untuk dikaitkan dengan pembelajaran matematik yang dipelajari akan datang.

Secara kesimpulannya, kanak-kanak belajar matematik melalui pengalaman dan pengamatan sesuatu perkara. Selain daripada itu, kanak-kanak juga dapat meningkatkan pemikiran dengan menghasilkan konsep baru. Ini bermakna pengetahuan boleh dianggap sebagai koleksi konsep-konsep dan tindakan-tindakan berguna berpandukan kepada keadaan dan masa yang diperlukan.

  :: Download Permainan My Rummy di sini ::

My Rummy menjanjikan pembelajaran matematik yang seronok, mencabar, bermakna dan berguna!

 

KESIMPULAN

Kanak-kanak itu ibarat bekas yang kosong dan guru berperanan untuk memenuhkan bekas tersebut dengan ilmu pengetahuan. Guru juga berperanan untuk membimbing kanak-kanak untuk menghadapi cabaran pada masa hadapan. Seharusnya kanak-kanak belajar melalui pengalaman dan membentuk ilmu pengetahuan berdasarkan permainan dan eksperimen dan tidak bergantung sepenuhnya dengan guru. Guru hanyalah seorang fasilitator yang akan memantau perkembangan kanak-kanak dalam mempelajari sesuatu konsep.

Menurut pandangan konstruktivime, kanak-kanak membina pengetahuan barunya dengan sendiri dengan menyesuaikan pengetahuan sedia ada. Melalui konsep konstruktivisme ianya mungkin akan sedikit sebanyak membantu menyelesaikan masalah yang dihadapi dalam pendidikan matematik masa kini. Matlamat pendidikan matematik adalah untuk melahirkan warga yang bukan sahaja berupaya untuk mengaplikasikan apa yang mereka telah pelajari dalam situasi dunia sebenar tetapi juga berupaya menyelesaikan masalah yang belum pernah mereka temui sebelum ini.

Sesungguhnya, kanak-kanak perlu didedahkan dengan pembelajaran secara konstruktivisme dan koperatif. Selain daripada itu, guru juga harus bersedia dengan pelbagai kaedah pengajaran supaya dapat membuka minda kanak-kanak tentang keindahan dan kepentingan pendidikan matematik dalam kehidupan seharian.

 

Dipetik daripada Rencana Bagaimana Kanak-kanak Mempelajari Matematik

My Rummy adalah permainan matematik yang boleh didapati dari laman web http://www.my-rummy.com dan merupakan permainan matematik sekolah rendah yang dicadangkan untuk digunakan oleh guru-guru matamatik sebagai permainan matematik dalam bilik darjah. Untuk mendapatkan / membeli permainan matematik ini, sila hubungi sales@my-rummy.com

ARTIKEL DALAM BAHASA INGGERIS

Teachers Need More Knowledge of How Children Learn Mathematics

Teachers need as much scientific knowledge about how children learn mathematics as physicians have about the causes of illnesses. Because of this need, teacher-preparation programs must change. Specific examples from classrooms illustrate this need.

I once wondered why some first graders were getting such answers as 3 + 4 = 4. By watching them, I found out that they were putting three counters out for the first addend and then four for the second addend, including the three that were already out.

 

Errors of this kind result from prematurely teaching a rule to follow. According to this rule, one must put counters out for the first addend, more counters for the second addend, and count all of them to get the answer. This rule works for children who already know that addition is the joining of two sets that are disjoint. However, the rule is superfluous for those who have constructed this logic, and it causes errors for those who have not constructed it.

 

Another example of imposing a rule that is either superfluous or premature is teaching counting-on to children who are counting-all. Counting-all refers to solving 3 + 4 by counting out three counters, then four other counters, and counting all of them again ("one-two-three-four-five-six-seven"). In counting-on, by contrast, children say "four-five-six-seven."

 

With scientific research replicated worldwide, Piaget showed that all children construct, or create, logic and number concepts from within rather than learn them by internalization from the environment (Piaget 1971; Piaget and Szeminska 1965; Inhelder and Piaget 1964; and Kamii 2000). Studying the research leads teachers to understand that addition involves part-whole relationships, which are very hard for children to make and which cannot be taught through practice and memorization. To add two numbers, children must put two wholes together ("three" and "four," for example) to make a higher-order whole ("seven") in which the previous wholes become two parts. When young children cannot think simultaneously about a whole and two parts, they count-all by changing both the "three" and the "four" into ones. Making them count-on is harmful when they cannot mentally make the part-whole relationship necessary to count-on.

 

When teachers study Piaget's theory and replicate the aforementioned research, they can understand why some first graders cannot count-on. When children have constructed their logic sufficiently to make the part-whole relationship of counting-on, they give up counting-all, just as babies give up crawling when they can walk. I hope that the day will come when teachers entering the classroom and those already in the classroom have as much scientific knowledge about how children learn mathematics as physicians have about the causes of illnesses. To reach this vision, the teacher-preparation programs must change.

 

When Children Learn Math Best

 

Children learn math best when they do so in “real world” situations, i.e., when they are using math to solve a real problem. That is why math games are an excellent method for children to learn math. Children are practicing the basics in a real world way. And, since the games are fun, children don’t even realize that they are practicing learning.

 

It's true that children learn a lot from things they are interested in. That Pokemon story or Harry Potter book, is helping develop their comprehension, vocabulary and many other literacy skills. This can also be true for children with learning disabilities.

 

Make sure your child can correctly write numerals. Even when children can count sequentially, they may have difficulties evidenced by reversing of numerals. Taking their hand in yours and tracing large numerals helps very much. Use a large, flat surface. Let your child get the "feet" of the shape. Try doing it with your child's eyes closed. Say the numeral as you trace it with him.

Before and after games, with numbers, are helpful for math understanding. First, know how far your child can sequentially count. Then ask, "What number comes after ?" and "What number comes just before. . . ?" This skill is critical for understanding both addition and subtraction.

 

Use numbers in a practical way around the house. "Susie, bring three forks to the table please;" or "Billy, will you give your dad five nails?" This gives children the opportunity to count in a realistic setting and to see, over and over again, that numerals in a problem at school represent real quantities. Use this activity in as many ways as you can.

 

Board games, which involve tossing of dice or spinning that result in a number of moves across a board, are excellent ways to develop sequential math understanding. These games are particularly helpful if there are backward moves as "penalties" in the game. You can even let your child make his own game by using a large sheet of construction paper. Dominoes are a good math activity because, besides being a game, the matching of numbers (in the simple form of the game) is required. Children see the dots, can orally name them, and then can make the correct match.

If numeral reversals continue, help your child with the understanding Of "left" and "right" on his own body. Play games like "Loobie-Loo" that require moving one side of the body or the other. The awareness of left and right also affects letter reversals as well.

 

Keeping score on games played at home. There are any number of activities that children can do at home winch require tallying. Mom and Dad might play a game, and the child can record points by using the style of clustering four straight (upright) lines with the fifth running diagonally. Then, he can figure the totals by counting by fives.

 

Give your child loads of opportunities to estimate space. This can be a family game if the conditions for involving other children are satisfactory. "How long do you suppose that table is?" Then it can be measured with a ruler or yardstick. The exact number of inches or feet is not critical. The question can be phrased so that the number of lengths is the critical factor. For example, "How many times would this ruler go across that table? You guess and I'll guess. Then we'll measure it. " You can practice estimating the distance across a room or up a wall, for example, in handprints, footsteps, paces, etc.

 

Measuring wall. Every home should have one wall that is used for keeping track of growth. Measure your child frequently and date each entry directly on the wall. Let him see how much he has grown as you measure him every month or every three months.

 

The same thing can be done with plants. There are many bulb plants that grow quickly in a pot or jar. Put a ruler beside the container and let your child record the amount of growth each day. He can, keep a chart, with your help, to determine the daily growth.

 

Why is it important for my child to learn math?

 

Math skills are important to a child’s success – both at school and in everyday life. Understanding math also builds confidence and opens the door to a range of career options.

  • In our everyday lives, understanding math enables us to:

  • manage time and money, and handle everyday situations that involve numbers (for example, calculate how much time we need to get to work, how much food we need in order to feed our families, and how much money that food will cost);

  • understand patterns in the world around us and make predictions based on patterns (for example, predict traffic patterns to decide on the best time to travel);

  • solve problems and make sound decisions;

  • explain how we solved a problem and why we made a particular decision;

  • use technology (for example, calculators and computers) to help solve problems.

 

How will my child learn math?

 

Children learn math best through activities that encourage them to:

  • explore;

  • think about what they are exploring;

  • solve problems using information they have gathered themselves;

  • explain how they reached their solutions.

 

Children learn easily when they can connect math concepts and procedures to their own experience. By using common household objects (such as measuring cups and spoons in the kitchen) and observing everyday events (such as weather patterns over the course of a week), they can "see" the ideas that are being taught.

 

An important part of learning math is learning how to solve problems. Children are encouraged to use trial and error to develop their ability to reason and to learn how to go about problem solving. They learn that there may be more than one way to solve a problem and more than one answer. They also learn to express themselves clearly as they explain their solutions.

 

At school, children learn the concepts and skills identified for each grade in the Ontario mathematics curriculum in five major areas, or strands, of mathematics. The names of the five strands are: Number Sense and Numeration, Measurement, Geometry and Spatial Sense, Patterning and Algebra, and Data Management and Probability. You will see these strand names on your child’s report card. The activities in this guide are connected with the different strands of the curriculum.

 

What tips can I use to help my child?

  • Be positive about math!

  • Let your child know that everyone can learn math.

  • Let your child know that you think math is important and fun.

  • Point out the ways in which different family members use math in their jobs.

  • Be positive about your own math abilities. Try to avoid saying "I was never good at math" or "I never liked math".

  • Encourage your child to be persistent if a problem seems difficult.

  • Praise your child when he or she makes an effort, and share in the excitement when he or she solves a problem or understands something for the first time.

 

Make math part of your child’s day.

  • Point out to your child the many ways in which math is used in everyday activities.

  • Encourage your child to tell or show you how he or she uses math in everyday life.

  • Include your child in everyday activities that involve math – making purchases, measuring ingredients, counting out plates and utensils for dinner.

  • Play games and do puzzles with your child that involve math.
    They may focus on direction or time, logic and reasoning, sorting, or estimating.

  • Do math problems with your child for fun.

  • In addition to math tools, such as a ruler and a calculator, use handy household objects, such as a measuring cup and containers of various shapes and sizes, when doing math with your child.

 

Encourage your child to give explanations

  • When your child is trying to solve a problem, ask what he or she is thinking. If your child seems puzzled, ask him or her to tell you what doesn't make sense. (Talking about their ideas and how they reach solutions helps children learn to reason mathematically.)

  • Suggest that your child act out a problem to solve it. Have your child show how he or she reached a conclusion by drawing pictures and moving objects as well as by using words.

  • Treat errors as opportunities to help your child learn something new.

 

What math activities can I do with my child?

 

1.  Understanding Numbers

Numbers are used to describe quantities, to count, and to add, subtract, multiply, and divide. Understanding numbers and knowing how to combine them to solve problems helps us in all areas of math.

 

Count everything! Count toys, kitchen utensils, and items of clothing as they come out of the dryer. Help your child count by pointing to and moving the objects as you say each number out loud. Count forwards and backwards from different starting places. Use household items to practise adding, subtracting, multiplying, and dividing.

 

Sing counting songs and read counting books. Every culture has counting songs, such as "One, Two, Buckle My Shoe" and "Ten Little Monkeys", which make learning to count – both forwards and backwards – fun for children. Counting books also capture children’s imagination, by using pictures of interesting things to count and to add.

 

Discover the many ways in which numbers are used inside and outside your home. Take your child on a "number hunt" in your home or neighbourhood. Point out how numbers are used on the television set, the microwave, and the telephone. Spot numbers in books and newspapers. Look for numbers on signs in your neighbourhood. Encourage your child to tell you whenever he or she discovers a new way in which numbers are used.

 

Ask your child to help you solve everyday number problems. "We need six tomatoes to make our sauce for dinner, and we have only two. How many more do we need to buy?" "You have two pillows in your room and your sister has two pillows in her room. How many pillowcases do I need to wash?" "Two guests are coming to eat dinner with us. How many plates will we need?"

 

Practise "skip counting". Together, count by 2’s and 5’s. Ask your child how far he or she can count by 10’s. Roll two dice, one to determine a starting number and the other to determine the counting interval. Ask your child to try counting backwards from 10, 20, or even 100.

 

Make up games using dice and playing cards. Try rolling dice and adding or multiplying the numbers that come up. Add up the totals until you reach a target number, like 100. Play the game backwards to practise subtraction.

 

Play "Broken Calculator". Pretend that the number 8 key on the calculator is broken. Without it, how can you make the number 18 appear on the screen? (Sample answers: 20 – 2, 15 + 3). Ask other questions using different "broken" keys.

 

2.  Understanding Measurements

We use measurements to determine the height, length, and width of objects, as well as the area they cover, the volume they hold, and other characteristics. We measure time and money. Developing the ability to estimate and to measure accurately takes time and practice.

 

Measure items found around the house. Have your child find objects that are longer or shorter than a shoe or a string or a ruler. Together, use a shoe to measure the length of a floor mat. Fill different containers with sand in a sandbox or with water in the bath, and see which containers hold more and which hold less.

 

Estimate everything! Estimate the number of steps from your front door to the edge of your yard, then walk with your child to find out how many there really are, counting steps as you go. Estimate how many bags of milk your family will need for the week. At the end of the week, count up the number of bags you actually used. Estimate the time needed for a trip. If the trip is expected to take 25 minutes, when do you have to leave? Have your child count the number of stars he or she can draw in a minute. Ask if the total is more or less than your child thought it would be.

 

Compare and organize household items. Take cereal boxes or cans of vegetables from the cupboard and have your child line them up from tallest to shortest.

 

Talk about time. Ask your child to check the time on the clock when he or she goes to school, eats meals, and goes to bed. Together, look up the time of a television program your child wants to watch. Record on a calendar the time of your child’s favourite away-fromhome activity.

 

Keep a record of the daily temperature outside and of your child’s outdoor activities. After a few weeks, ask your child to look at the record and see how the temperature affected his or her activities.

 

Include your child in activities that involve measurements. Have your child measure the ingredients in a recipe, or the length of a bookshelf you plan to build. Trade equal amounts of money. How many pennies do you need to trade for a nickel? for a dime?

 

3.  Understanding Geometry

The ability to identify and describe shapes, sizes, positions, directions, and movement is important in many work situations, such as construction and design, as well as in creating and understanding art. Becoming familiar with shapes and spatial relationships in their environment will help children grasp the principles of geometry in later grades.

 

Identify shapes and sizes. When playing with your child, identify things by their shape and size: "Pass me a sugar cube." "Take the largest cereal box out of the cupboard."

 

Build structures using blocks or old boxes. Discuss the need to build a strong base. Ask your child which shapes stack easily, and why.

 

Hide a toy and use directional language to help your child find it. Give clues using words and phrases such as up, down, over, under, between, through, and on top of.

 

Play "I spy", looking for different shapes. "I spy something that is round." "I spy something that is rectangular." "I spy something that looks like a cone."

 

Ask your child to draw a picture of your street, neighbourhood, or town. Talk about where your home is in relation to a neighbour’s home or the corner store. Use directional words and phrases like beside and to the right of.

 

Go on a "shape hunt". Have your child look for as many circles, squares, triangles, and rectangles as he or she can find in the home or outside. Do the same with threedimensional objects like cubes, cones, spheres, and cylinders. Point out that street signs come in different shapes and that a pop can is like a cylinder.

 

4.  Understanding Patterns

We find patterns in nature, art, music, and literature. We also find them in numbers. Patterns are at the very heart of math. The ability to recognize patterns helps us to make predictions based on our observations. Understanding patterns helps prepare children for the study of algebra in later grades.

 

Look for patterns in storybooks and songs.

Many children’s books and songs repeat lines or passages in predictable ways, allowing children to recognize and predict the patterns.

 

Create patterns using your body.

Clap and stomp your foot in a particular sequence (clap, clap, stomp), have your child repeat the same sequence, then create variations of the pattern together. Teach your child simple dances that include repeated steps and movements.

 

Hunt for patterns around your house and your neighbourhood.

Your child will find patterns in clothing, in wallpaper, in tiles, on toys, and among trees and flowers in the park. Encourage your child to describe the patterns found. Try to identify the features of the pattern that are repeated.

 

Use household items to create and extend patterns. Lay down a row of spoons pointing in different directions in a particular pattern (up, up, down, up, up, down) and ask your child to extend the pattern.

 

Explore patterns created by numbers. Write the numbers from 1 to 100 in rows of 10 (1 to 10 in the first row, 11 to 20 in the second row, and so on). Note the patterns that you see when you look up and down, across, or diagonally. Pick out all the numbers that contain a 2 or a 7.

 

5.  Understanding and managing data

Every day we are presented with a vast amount of information, much of it involving numbers. Learning to collect, organize, and interpret data at an early age will help children develop the ability to manage information and make sound decisions in the future.

 

Sort household items.

As your child tidies up toys or clothing, discuss which items should go together and why. Show your child how you organize food items in the fridge – fruit together, vegetables together, drinks on one shelf, condiments on another. Encourage your child to sort other household items – crayons by colour, cutlery by type or shape, coins by denomination.

 

Make a weather graph.

Have your child draw pictures on a calendar to record each day’s weather. At the end of the month, make a picture graph showing how many sunny days, cloudy days, and rainy days there were in that month.

 

Make a food chart.

Create a chart to record the number of apples, oranges, bananas, and other fruit your family eats each day. At the end of the month, have your child count the number of pieces of each type of fruit eaten. Ask how many more of one kind of fruit were eaten than of another. What was your family’s least favourite fruit that month?

 

Talk about the likelihood of events. Have your child draw pictures of things your family does often, things you do sometimes, and things you never do. Discuss why you never do some things (swim outside in January). Ask your child if it’s likely to rain today. Is it likely that a pig will fly through the kitchen window?

 

Where can I get help?

Many people are willing to support you in helping your child learn math, and there are also many resources available.

  • Your Child’s Teacher

  • Your child’s teacher can provide advice about helping your child with math. Here are some topics you could discuss with the teacher:

  • your child’s level of performance in math

  • the goals your child is working towards in math, and how you can support your child in achieving them

  • strategies you can use to assist your child in areas that he or she finds difficult

  • activities to work on at home with your child

  • other resources, such as books, games, and websites

 

 

 

 

Laman Web ini disenggarakan oleh My-Rummy.com

Semua Hak Cipta Terpelihara

2006-2013

[ Home ]